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In this paper we study the behavior of the integrated density of states of random
acoustic operators of the form Aw=−N 1

+w
N. When +w is considered as an

Anderson type long range perturbations of some periodic function, the behavior
of the integrated density of states of Aw in the vicinity of the internal spectral
edges is given.
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1. INTRODUCTION

Basic properties of wave propagation in a nonhomogeneous medium even-
tually boil down to the spectral properties of the relevant self-adjoint dif-
ferential operator. As far as the acoustic waves are concerned, they are
governed by the so called ‘‘acoustic operator.’’ (2) It is a self adjoint opera-
tor on L2(Rd) and formally defined by:

Aw=A(+w)=−N
1

+w

N=− C
d

i=1
“xi

1
+w

“xi
, (1.1)

where +w is a positive and bounded function which represents the mass
density or the elasticity contrast of the medium where the wave propagates.
See ref. 2 and references therein for more physicals interpretations and
motivation.



Let us start by defining the main object of our study, the integrated
density of states. For this we consider L a cube of Rd. We note by Aw, L the
restriction of Aw to L with self adjoint boundary conditions. As Aw is ellip-
tic, the resolvent of Aw, L is compact and, consequently, the spectrum of
Aw, L is discrete and is made of isolated eigenvalues of finite multiplicity. (22)

We define

NL(E)=
1

vol(L)
· #{eigenvalues of Aw, L [ E}. (1.2)

Here vol(L) is the volume of L in the Lebesgue sense and #E is the cardinal
of E.

It is shown that the limit of NL(E) when L tends to Rd exists almost
surely and is independent of the boundary conditions. It is called the
integrated density of states of Aw (IDS for the short form). See ref. 21.

The study of the integrated density of states and specially of its behav-
ior is of interest for its relationship with physical interpretations. See ref. 5.
The question we are interested in here deals with the behavior of N at the
internal spectral edges of Aw.

1.1. The Behavior of the IDS

We start by giving a brief history of the subject. In 1964 and under
physical considerations Lifshitz (14) argued that, for a Schrödinger operator
of the form Hw=−D+Vw, there exists c1, c2 > 0 such that N(E) satisfies
the asymptotic:

N(E) 4 c1 exp(−c2(E − E0)−a), E Q E0. (1.3)

Here E0 is the bottom of the spectrum of Hw and a > 0. The behavior (1.3)
is known as Lifshitz tails (for more details see part IV.9.A of ref. 21).
Lifshitz predicted (1.3) also at fluctuating edges inside the spectrum. The
latter are those parts of the spectrum which are determined by rather rare
events.

The principal results known on Lifshitz tails are mainly shown for
Schrödinger operators (for continuous and discrete cases). (See refs. 5, 7, 9,
20, 23, and others.) For an operator of type (1.1), see refs. 15, 16, and 18.

1.2. The Result

When +w in (1) is obtained by a short range perturbation of Anderson
type of some periodic function, it is proved (16) that the IDS of Aw exhibits
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internal Lifshitz tails at the edges of the spectral gaps if and only if the IDS
of some periodic operator is non degenerate at the same edges. The essen-
tial goal of this work is to give the asymptotic of the IDS of the operator
defined by (1) when +w is given as a long range perturbation of some
periodic function. Note that the main novelty of this paper compared to
ref. 16 is that the asymptotic is given without any assumption on the
behavior of the IDS of the background operator. As we will see, in contrast
to ref. 16, in the present situation the kinetic energy, i.e., the Floquet
eigenvalues of the background periodic operator do not influence the IDS
behavior (See also ref. 18 where we require to the dimension to be 2.).
Indeed in this case the Lifshitz exponent (the a in Eq. (1.3)) does not
depend on the uncertainly principle, i.e., on the kinetic energy. We refer to
this situation as the classical regime. Note that here as in ref. 16 we con-
sider the case where the decreasing rate of the probability density at the
edges of its support is 0. See (H.3).

The proof of the result is based on the use of the technique of periodic
approximations (9, 16) and is composed of two main parts, the upper and the
lower bounds.

To present our result we consider the following plan:
In Section 2, we define the model to be studied and specify various

assumptions. We introduce a periodic reference operator Aw
+. We state the

principal theorem (Theorem 2.1) which gives the asymptotic of the IDS.
To prove Theorem 2.1, the technique of the periodic approxima-

tions (9, 16) enables to approximate the IDS of Aw with that of well chosen
periodic operators. This will be done in Sections 3. Section 4 is devoted to
the proof of Theorem 2.1.

2. THE MODEL

Let us start this section by giving the expression of +w. We assume that
+w is a function which satisfies

(H.0)

+w=+0
11+ C

c ¥ Z
d

wcuc
2 ,

where

(i) +0 is measurable real and Zd-periodic function, i.e.,

+0(x)=+0(x+c), -x ¥ Rd, c ¥ Zd.
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(ii) There exists constants +0, + > +0, − > 0 such that for almost all
x ¥ Rd, we have

0 < +0, − [ +0(x) [ +0, +. (2.4)

(iii) For c ¥ Zd, we set uc( · )=u( · − c). We suppose that u is a real
function such that there exists U+ > 0: such that for almost all x ¥ Rd

0 [ U(x) — C
c ¥ Z

d
uc(x) [ U+ < .. (2.5)

(iv) (wc)c ¥ Z
d is a family of non constant and positive, independent

identically distributed random variables whose common probability
measure is denoted by Pw0

. We denote the probability space by (W, F, P).
We assume that Pw0

is compactly supported.

Let A(+w) be the quadratic form defined as follow: for u ¥ H1(Rd)
=D(A(+w))

A(+w)[u, u]=F
R

d

1
+w(x)

Nu(x) Nu(x) dx.

A(+w) is a symmetrical, closed and positive quadratic form. Aw given by
(1) is defined to be the self adjoint operator associated to A(+w). (22)

Assumption (H.0) ensures that Aw is a measurable family of self
adjoint operators and ergodic. (5, 21) Indeed, if yc refers to the translation
by c, then (yc)c ¥ Z

d is a group of unitary operators on L2(Rd) and for c ¥ Zd

we have

ycAwy−c=Aycw.

According to refs. 5, 21 we know that there exists S, Spp, Sac, and Ssc

closed and non random sets of R such that S is the spectrum of Aw with
probability one and such that if spp (respectively sac and ssc) design the
pure point spectrum (respectively the absolutely continuous and singular
continuous spectrum) of Aw, then Spp=spp, Sac=sac, and Ssc=ssc with
probability one.

2.1. Reference Operator

It is convenient to consider Aw as a perturbation of some periodic
operator Aw

+. More precisely, for +w
+=+0(1+w+ ; c ¥ Z

d uc), where
w+=sup(supp Pw0

) we write:

Aw=Aw
++DAw,
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with

Aw
+=A(+w

+)

and

DAw=Aw − Aw
+=−N

+w
+ − +w

+w
++w

N \ 0.

2.1.1. Main Assumptions

We assume that

(H.1)

• There exists E+ and d > 0 such that s(Aw
+) 5 [E+, E++d)=

[E+, E++d) and s(Aw
+) 5 (E+ − d, E+]=”.

To prove our result, we will need the following assumptions:

(H.2)

• Let C0={x ¥ Rd; -1 [ j [ d; − 1
2 < xj [ 1

2}. There exists n ¥ (d, d+2]
and 0 [ g− [ g+ two non vanishing functions on L2(C0), such that for any
c ¥ Zd and almost every x ¥ C0 one has

g− (x) [ u(x+c) · (1+|c|)n [ g+(x),

and for all 1 [ i [ d,

g− (x) [ |(“xi
u)(x+c)| · (1+|c|)n [ g+(x).

(H.3)

• lim supe Q 0+
log |log Pw0([w

+ − e, w
+])|

log e =0.

As, DAw \ 0 and w+ is in the support of Pw0
, S contains an interval of

the form [E+, E++a](a > 0) (see ref. 8).
As we are interested in the behavior of the IDS in the neighborhood of

E+, we require that E+ remains always the edge of a gap for S, when the
perturbation is turned on. More precisely, if for all t ¥ [0, 1], we define
Aw, t=Aw

++t DAw and St is the almost sure spectrum of Aw, t, then one
requires that the following assumption hold.

(H.4)

There exists d − > 0 such that for all t ¥ [0, 1], St 5 [E+ − d −, E+)=”.

Integrated Density of States of Acoustic Operators 981



2.1.2. The Main Theorem

The main result of this work is:

Theorem 2.1. Let Aw be the operator defined by (1). We assume
that (H.1)–(H.4) hold. Then E+ is a continuity point for N and

lim
e Q 0, e > 0

log |log(N(E++e) − N(E+))|
log e

=−
d

n − d
. (2.6)

Remark 2.2.

– The result of Theorem 2.1 is stated for lower band edges. Under
adequate assumptions the corresponding result can be proved for upper
band edges.

– As it has already been mentioned in Remark 11 of ref. 2, one can
use the result of Theorem 2.1 to show either Anderson localization (2) or
dynamical localization (1) under assumptions on the distribution of the
random variables weaker than those required in these references. This was
done in the Schrödinger case in ref. 25 and for the divergence operator in
ref. 17.

Outline of the Proof. To show Theorem 2.1, we use periodic
approximations. This technique allows us to approximate exponentially the
initial IDS (see Lemma 3.3), by that of some periodic operators. Then we
have just to control the behavior of the IDS of those periodic operators
and take the limit. To do this, the upper and lower bounds are proven
separately.

Note that in ref. 16 the upper bound is proved under the non degen-
eracy assumption of the IDS of the background operator Aw

+ which is
relaxed here. The upper bound is proved by the use of probabilistic argu-
ments and Markov inequalities. (11)

The lower bound is proved by constructing a large enough number of
orthogonal approximate eigenfunctions of Aw, L associated with approxi-
mate eigenvalues in [E+ − e, E++e]. This, will enables to lower bound the
number of the eigenvalues of Aw, L in the interval [E+ − e, E++e].

We end this section by remarks about our assumptions. Let us start
with (H.1). Figotin and Kuchment in ref. 3 studied the existence of open
spectral gaps in the spectrum of certain periodic acoustic operators for
d=2 and 3. In assumption (H.1) we asked that E+ > 0 which excludes the
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spectral gap (−., 0). Lifshitz tails is likely to occur at the neighborhood of
the fluctuation edges. See ref. 21. It should be noted that 0 is not a fluctua-
tion edge of the spectrum. It belongs to the spectrum of Aw independently
of the choice of +w(x).

If the support of Pw0
is connected, the assumption (H.4) can be

replaced by:

(H.4.bis). There exists d − > 0 such that S 5 [E+ − d −, E+)=”.
By adding a disorder parameter g in the equation which defines +w,

i.e.,

+w=+0
11+g C

c ¥ Z
d

wcuc
2 ,

we can choose g small enough so that the spectral gap in s(Aw
+) will not be

closed after the perturbation. (2)

3. APPROXIMATION OF THE DENSITY OF STATES

For completeness, in this section we review some of the interesting
properties of the periodic operators, (13) then we will approximate the
density of states of Aw by the density of states of periodic approximations.
In a neighborhood of E+, we will control the behavior of the density of
states of periodic approximations via the density of states of periodic
approximations of the reference operators. We then compute the limit for
the density of states of the reference operators and we obtain the sought for
result.

3.1. Some Floquet Theory

Now we review some standard facts from the Floquet theory for
periodic operators. Basic references for this material are. (13, 22, 24)

As +w
+ is Zd-periodic, for any c ¥ Zd, we have

ycAw
+yg

c =ycAw
+y−c=Aw

+.

Let Tg=Rd/(2pZd). We define H by

H={u(x, h) ¥ L2
loc(Rd) é L2(Tg); -(x, h, c)

¥ Rd × Tg × Zd; u(x+c, h)=e ichu(x, h)}.
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There exists U a unitary isometry from L2(Rd) to H such that Aw
+ admits

the Floquet decomposition (13, 24)

UAw
+Ug=F

À

T
g

Aw
+(h) dh.

Here Aw
+(h) is the operator Aw

+ acting on Hh, defined by

Hh={u ¥ L2
loc(Rd); -c ¥ Zd, u(x+c)=e ichu(x)}.

As Aw
+ is elliptic, we know that, Aw

+(h) has a compact resolvent; hence its
spectrum is discrete. (22) We denote its eigenvalues, called Floquet eigen-
values of Aw

+, by

E0(h) [ E1(h) [ · · · [ En(h) [ · · · .

The corresponding eigenfunctions are denoted by (w(x, · )j)j ¥ N. The func-
tions (h Q En(h))n ¥ N are Lipshitz-continuous, and we have

En(h) Q +. as n Q +. uniformly in h.

The spectrum s(Aw
+) of Aw

+ is made of bands (i.e., s(Aw
+)=

1n ¥ N En(Tg)).

3.2. The Periodic Approximations

Let k ¥ Ng. We define the following periodic operator

Aw, k=−N
1

+w, k
N,

where the function +w, k is defined by

+w, k=+0
11+ C

c ¥ Ck 5 Z
d

wc C
b ¥ (2k+1) Z

d
uc+b

2 ,

Ck is the cube

Ck=3x ¥ Rd; -1 [ j [ d, −
2k+1

2
< xj [

2k+1
2

4.
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Aw, k is (2k+1) Zd-periodic and essentially self adjoint operator. Let Tg
k =

(Rd)/ 2p
2k+1 Zd. We define Nw, k the IDS of Aw, k by

Nw, k(E)=
1

(2p)d C
n ¥ N

F
{h ¥ T

g
k , Ew, k, n(h) [ E}

dh. (3.7)

Let dNw, k the derivative of Nw, k in the distribution sense. As Nw, k is
increasing, dNw, k is a positive measure; it is the density of states of Aw, k.
We denote by dN the density of states of Aw. For all j ¥ C.

0 (R), dNw, k

verifies (see refs. 9 and 22)

Oj, dNw, kP=
1

(2p)d F
h ¥ T

g
k

trHh
(j(Aw, k, h)) dh,

=
1

vol(Ck)
tr(qCk

j(Aw, k) qCk
), (3.8)

where for L … Rd, qL will design the characteristic function of L and tr(A)
is the trace of A (we index by Hh if the trace is taken in Hh). The proof of
(3.8) is given in ref. 9.

Theorem 3.1.

(1) For any j ¥ C.

0 (R) and for almost all w ¥ W we have

lim
k Q .

Oj, dNw, kP=Oj, dNP.

(2) For any l ¥ R a continuity point for N, we have
limk Q . E(Nw, k(l))=N(l) almost surely.

Remark 3.2. The result of Theorem 3.1 is close to that of Theorem 5.1
of ref. 9. The proof is also similar and is based on functional analysis. The
unique difference in the proof comes from the control of the behavior of
the resolvent. In ref. 9, the perturbation is a potential; in our case, it is a
differential operator of the same order as the background operator. The
detail of the proof is given in ref. 16.

In what follow we prove that the IDS of Aw is exponentially well
approximated by the expectation of the IDS of the periodic operators Aw, k

when k is polynomial in e−1. More precisely we prove
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Lemma 3.3. For any g0 > 1 and I … R a compact interval, there
exists n0 > 0 and e0 > 0 such that, for 0 < e < e0, E ¥ I and k \ k1=e−n0, we
have

E[Nw, k(E+e/2) − Nw, k(E − e/2)] − e−e
− g0

[ N(E+e) − N(E − e)

[ E[Nw, k(E+2e) − Nw, k(E − 2e)]+e−e
− g0. (3.9)

Proof. The last result is well known for operators with compact
single site potentials. (10–12) For this we need to define another operator.
More precisely let f a function on Rd, we set f e(x)=f(x) q{e · |x| [ 1}, f e is
compactly supported. We define the following random operator:

Ae, w=−N ·
1

+e, w

· N,

where +e, w( · ) is the function given by

+e, w( · )=+0
11+ C

c ¥ Z
d

wcu e( · − c)2 .

The periodic approximations of Ae, w it is defined analogously to Aw, k and
will be denoted by Ae, w, k. Let Ne (respectively Ne, w, k) be the IDS of Ae, w

(respectively of Ae, w, k). Notice that from the decaying assumption (H.2)
and the fact that the random variables are bounded, uniformly in k and w,
we get that there exits C > 0 such that for any Y=(−1 − D)−1 j, where
j ¥ L2(Rd)

0 [ OAwY, YP−OAe, wY, YP [ C · en − d · ||Y||2.

The same inequality holds for the periodic approximations. This yields
that, uniformly in k and w and locally uniformly in the energy E we have

Ne(E − C · en − d) [ N(E) [ Ne(E+C · en − d), (3.10)

and

Ne, w, k(E − C · en − d) [ Nw, k(E) [ Ne, w, k(E+C · en − d). (3.11)

This tells us that the IDS of Aw is well approximated by that of Ae, w. But
for the last operator the singles sites potentials are compactly supported
and so many techniques and results are available. (11) We need the following
lemma
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Lemma 3.4 [11]. We assume that the single site potential is sup-
ported in a ball of radius Re. Let I, a relatively compact open interval in R.
For any b ¥ (0, 1), there exists C > 1 and r > 0 such that, for any
j ¥ C.

0 (I), for n ¥ Ng and k > Re, we have

|E(Oj, dNw, kP) −Oj, dNP|

[ C · |k − Re |−(1 − b) k · nn · sup
x ¥ R, 0 [ j [ n+r

|(|x|+1)r+n j (j)(x)| . (3.12)

Remark 3.5. This lemma is proven in ref. 11 for the Schrödinger
case. It is still true for our case. The proof is based on the Helffer Sjöstrand
formula and the resolvent equation with the exponential decay of the
resolvent kernels (the Combes–Thomas argument).

Let j be a Gevrey class function, of Gevrey exponent a > 1 (see ref. 4)
such that j is supported in [ − 2, 2], 0 [ j [ 1 and j — 1 on [ − 1, 1]. For
0 < e < 1 and E ¥ R , we set

jE, e( · )=j 1 · − E
e

2 .

Fix I … R compact. Then from Lemma 3.4 and properties of Gevrey class
functions, we deduce that there exists C > 1 such that for E ¥ I, k > Re,
n \ 1 and 0 < e < 1 we have

|E(OjE, e, dNw, kP) −OjE, e, dNP| [ e−n − r (n+r)2a(n+r) (k − Re)−(1 − b) n.

We take n [ (k − Re) (1 − b)/4a − r. For k − Re large, we get that, there exists
C > 1 such that for n > r and 0 < e < 1, we have

|E(OjE, e, dNw, kP) −OjE, e, dNP| [ (e−1(k − Re) (1 − b)/4) (k − Re)(1 − b)/4a

.

As Re ’ e1/(d − n), for g0 > 1 such that a · g0 > 1 and k=k1=e−n0 >
e−g04a/(1 − b)+Re, (it suffice to take n0 > sup(g04a/(1 − b), 1

d − n )) we get that
there exist e0 > 0 such that, for 0 < e < e0, we have

|E(OjE, e, dNw, ke
P) −OjE, e, dNP| [ e−e

− g0. (3.13)

As dNe and dNe, w, k are positive measures and by the definition of j, we get

E(Ne, w, k(E+e) − Ne, w, k(E − e)) [ E(OjE, e, dNe, w, kP)

[ E(Ne, w, k(E+2e) − Ne, w, k(E − 2e))

and

Ne(E+e) − Ne(E − e) [ OjE, e, dNP [ Ne(E+2e) − Ne(E − 2e).
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This, and Eq. (3.13) gives (3.9), for Ae, w. To get (3.9) for Aw, it suffices to
pick e=e1/n − d and take into account (3.10), (3.11), and (3.13). L

Now we have the necessary tools to prove the main theorem.

4. THE PROOF OF THEOREM 2.1

Notice that the first point of the theorem, i.e., the continuity of the
IDS at E+ is a consequence of the continuity if the IDS of the periodic
operator. See ref. 16.

As we mentioned in the introduction the proof of the main result is
composed of two classical parts, the upper and the lower bounds. We start
by the proof of the upper bound, then we turn to the lower bound.

4.1. The Upper Bound

From Lemma 3.3 and for g0 > 1/(n − d) and k ’ e−d such that d > n0

the proof of the upper bound is reduced to prove that

lim sup
e Q 0+

log |log(E(Nw, k(E++e) − Nw, k(E+)))|
log e

[ −
d

n − d
. (4.14)

Lemma 4.1. Let k ’ e−r with r > 1/(n − d). Define the event,

Ee, w=3w; DAw, k \ − eD=−e C
d

i=1
“

2
xi
4 .

Then Ee, w has a probability at least 1 − Pe where Pe satisfies

lim sup
e Q 0+

log |log(Pe)|
log e

[ −
d

n − d
. (4.15)

Proof. For w+
c =w+− wc and using the assumption (H.2), we get

that there exists C > 0 such that for any j ¥ C.

0 (Rd) we have

ODAw, kj, jP \ C C
c ¥ Z

d; 1 [ i [ d

w+
c̃ Ou( · − c) “xi

j, “xi
jP

where c̃=c mod (2k+1) Zd

\ C C
a ¥ Z

d

1 C
c ¥ Z

d
w+

c̃ g− (x − c − a)(1+|a − c|)−n2 |Nj|2

= C
a ¥ Z

d
Aa(w) g− (x − a) |Nj|2.

Here Aa(w)=C ; c ¥ Z
d w+

c̃ (1+|a − c|)−n.
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Notice that; w+
c̃ is (2k+1) Zd periodic so is Aa(w). We set Zd

2k+1=
{a ¥ Zd; |a| < k}. Then we have

P({DAw, k \ − eD}) \ P({-a ¥ Zd
2k+1; Aa \ e})

\ 1 − C
a ¥ Z

d
2k+1

P({Aa(w) [ e}).

As the random variables are i.i.d, we have

P({DAw, k \ − eD}) \ 1 − (2k+1)d P({A0(w) [ e}). (4.16)

To estimate P({A0(w) [ e}) it suffices to follow the same computation
done in ref. 11 and based on the Markov’s inequality, and the Taylor
expansion of e−x to get that

P({A0(w) [ e}) [ e− 1
C e

−
d

n − d . (4.17)

By this we complete the proof of Lemma 4.1. L

Lemma 4.2. There exists C > 0 and e0 > 0 (uniform in k and w)
such that, if 0 < e < e0 and w satisfies DAw, k \ − CeD, then for k ¥ N, one
has

Nw, k(E+)=Nw, k(E++e).

Lemma 4.2 says that if DAw, k \ − CeD, then the spectrum of Aw, k does
not intersect (E+, E++e) for e small . This lemma will be proved in the end
of this section.

Let us use the last result to finish the proof of the upper bound. Notice
that estimate (4.14) is an immediate consequence of Lemmas 4.1 and 4.2.
Indeed, picking C as in Lemma 4.2; one computes

E(Nw, k(E++e) − Nw, k(E+))

=E([Nw, k(E++e) − Nw, k(E+)]1{w; DAw, k \ − CeD}
)

+E([Nw, k(E++e) − Nw, k(E+)]1{w; DAw, k < − CeD}
)

=E([Nw, k(E++e) − Nw, k(E+)]1{w; DAw, k < − CeD}
)

[ C0P({w; DAw, k < − CeD})

=C0(1 − P(EC · e, w))=C0PC · e.
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Here, we have used the fact that Nw, k is bounded locally uniformly in
energy, uniformly in w, k by C0. Tanking (4.15) into account we end the
proof of (4.14) and consequently the proof of the upper bound. L

Proof of Lemma 4.2. Let us take DAw, k > − CeD. Let j ¥ C.

0 (Rd)
such that OAw, kj, jP > E+, then taking point (ii) of (H.0) into account we
get

OAw, kj, jP=OAw
+, kj, jP+ODAw, kj, jP

> OAw
+, kj, jP+Ce |Nj|2

> OAw
+, kj, jP+Ce+0, − E+. (4.18)

But by assumption (H.1), below the energy E+ there is a gap in the spec-
trum of Aw

+ of length at least d > 0; we get that for e < e0= d
E+C+0, −

; Aw, k

has no spectrum in (E+, E++CeE++0, − ). So the proof of Lemma 4.2 is
ended if we choose C= 1

E++0, −
> 0. L

4.2. The Lower Bound

The lower bound is proven in the same way as in ref. 16 and consists
on proving the following theorem.

Theorem 4.3. Let Aw be the operator defined by (1). We assume
that (H.1) and (H.2) hold. Then, we have

lim inf
e Q 0+

log |log(N(E++e) − N(E+))|
log e

\ −
d

n − d
. (4.19)

Proof. We will sketch the proof, for more details see ref. 16. As by
assumption, there is a spectral gap below E+ of length at least dŒ > 0. Thus,
for e < dŒ we have

N(E++e) − N(E+)=N(E++e) − N(E+ − e).

To prove Theorem 4.3, we will lower bound N(E++e) − N(E+ − e). So,
for N large, we will show that Aw, LN

(Aw, LN
is Aw restricted to LN with

Dirichlet boundary conditions) has a large number of eigenvalues in
[E+ − e, E++e] with a large probability. For this we will construct a family
of approximate eigenvectors associated to approximate eigenvalues of
Aw, LN

in [E+ − e, E++e]. These functions will be constructed from an
eigenvector of Aw

+ associated to E+. Locating this eigenvector in momen-
tum h, one obtains an approximate eigenfunction of Aw, LN

. Notice that the
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main difference point with the proof given in ref. 16 appears on the choice
of the box where we locate this eigenvector in h. Then we locate this eigen-
function in x in several disjointed places, we get several eigenfunctions two
by two orthogonal.

In order to simplify the notations, in what follows we assume that
h0=0 is a point where E1(h) reaches E+. From refs. 9 and 16 there exists
C > 1, V a neighborhood of 0 and f: h ¥ V Q f( · , h) a real analytic func-
tion such that, ||f( · , h)||L2(C0)=1 and

||(Aw
+(h) − E+) f( · , h)||L2(C0) [ C |h|2. (4.20)

Let 0 < t < 1 be a small constant. Let q ¥ C.

0 (R) such that it is positive,
supported in [t

2 , t] and >[t

2, t] q(t)2 dt=2.
For e > 0, we define

We(h)=e−d/4 D
d

j=1
q(e−1

2hj) ¥ L2(Tg)

and

Wf
e ( · , h)=We(h) · f( · , h).

Now we estimate

||(Aw
+ − E+) Wf

e ||2
H=

1
vol(Tg)

F
T

g
||(Aw

+(h) − E+) f( · , h)||2
L2(C0) |We(h)|2 dh

[ C2 F
T

g
|h|4 |We(h)|2 dh

[ C2e2 F
[t

2, t]d
|h|4 D

d

j=1
q2(hj) dh

[
e2

8
, if t is small enough. (4.21)

For b ¥ Zd, we define

Wf
e, b( · , h)=e−ib · hWf

e ( · , h) and Wf
a, e, b, z( · , h)=e−ib · h(PLa(z)W

f
e )( · , h),

where La(z) is the cube defined by

La(z)={c ¥ Zd; for 1 [ j [ d; |cj | [ z−( 1
n − d+a)},

and PLa(z) is the orthogonal projection on La(z).

Integrated Density of States of Acoustic Operators 991



We set

Uf
e, b(x)=F

T
g
Wf

e, b(x, h) dh and Uf
a, e, b, z(x)=F

T
g
Wf

a, e, b, z(x, h) dh.

For N large and well chosen b and (wc)c ¥ Z
d, Uf

a, e, b, z will be an approxi-
mate eigenfunction of Aw, LN

associated with an approximate eigenvalue in
the interval [E+ − e, E++e].

We show initially that ||Uf
a, e, b, z ||L2(R

d) > C > 0. Note that

(vol(Tg)) ||Uf
e, b ||2

L2(R
d)=||Wf

e, b ||2
H

=F
T

g
||f( · , h)||2

L2(C0) |We(h)|2 dh \ 2d.

As in ref. 9 using the non-stationary phase we see that Uf
a, e, b, z and Uf

e, b are
close to each others. More precisely, for any n ¥ N and b ¥ Zd, there exists
Cn > 0 such that

(vol(Tg)) · ||Uf
a, e, b, z −Uf

e, b ||L2(R)=||Wf
a, e, b, z −Wf

e, b ||H [ Cne−n/2zn( 1
n − d+a).

(4.22)

So, for z=e small enough, we get

||Uf
a, e, b, z ||L2(R

d) \ 1.

Now we have to look to the conditions for which we have

||(Aw − E+) Uf
a, e, b, z ||2 [ e2.

Note that

||(Aw, LN
− E+) Uf

a, e, b, z ||2 [ ||(Aw − E+) Uf
a, e, b, z ||2

[ 2 ||(Aw
+ − E+) Uf

a, e, b, z ||2+2 ||DAwU
f
a, e, b, z ||2.

(4.23)

Equations (4.21) and (4.22) give the bound on the first member of (4.23), it
just remains to us to control the second term. For w+

c =w+− wc, we have

||(DAw) Uf
a, e, b, z ||2 [ 2 > C

c ¥ Z
d, 1 [ i [ d

w+
c (“xi

u)( · − c) · (“xi
Uf

a, e, b, z)>
2

+2 > C
c ¥ Z

d, 1 [ i [ d
w+

c u( · − c) “
2
xi
Uf

a, e, b, z
>2

. (4.24)

To estimate (4.24), one needs the following lemmas, proven in ref. 16.
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Lemma 4.4 [16]. There exists K > 0, such that

> C
c ¥ Z

d, 1 [ i [ d

w+
c (“xi

u)( · − c) · (“xi
Uf

a, e, b, z)>
2

[ e4+K(ea(n − d) · e+ sup
c ¥ b+2 La(e)

w+
c )2. (4.25)

Lemma 4.5 [16]. There exists K > 0, such that

> C
c ¥ Z

d, 1 [ i [ d

w+
c u( · − c) “

2
xi
Uf

a, e, b, z
>2

[ e4+K(ea(n − d) · e+ sup
c ¥ b+2 La(e)

w+
c )2.

(4.26)

Now, combining (4.25), (4.26) and taking (4.24) into account we get
that there exists K > 0 such that

||(DAw) Uf
a, e, b, e ||

2 [ e3+K(ea(n − d) · e+ sup
c ¥ b+2 La(e)

w+
c )2. (4.27)

By (4.21),(4.22), and (4.27), it follows that:

||(Aw − E+) Uf
a, e, b, e ||

2 [
e2

2
+K(ea(n − d) · e+ sup

c ¥ b+2 La(e)
w+

c )2. (4.28)

Now, for N large, we may divide LN into N(e) disjoints cubes of size
2 La(e). One has

N(e) 4
(2N)d

e−d( 1
n − d+a)

; (4.29)

and

0
N(e)

j=1
(bj+La(e)) … LN and for j ] jŒ, (bj+2 La(e)) 5 (bjŒ+2 La(e))=”.

This implies that for j ] jŒ, Uf
a, e, bj, e and Uf

a, e, bj Œ, e are orthogonal.
We denote the counting function of the eigenvalues of Aw, LN

below E
by GLN

(E), then

E(GLN
(E+e) − GLN

(E − e))

=E(#{eigenvalues of PNAwPN in [E+ − e, E++e]})

\ E(#{1 [ j [ N(e); ||(Aw − E+) Uf
a, e, bj, e ||L2(R

d) [ e})

\ E 1 C
N(e)

j=1
Bj(w)2 , (4.30)
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where

Bj(w)=˛1 if K(ea(n − d) · e+ sup
c ¥ bj+2 La(e)

w+
c )2 [

e2

2
,

0 if not.

The (Bj)1 [ j [ N(e) are independent, identically distributed, Bernoulli random
variables. So Eqs. (4.29) and (4.30), imply that there exists C > 0, such that
one has

NLN
(E+e) − NLN

(E − e)

=
1

((2N+1))d E(#{eigenvalues of PNAwPN in [E+ − e, E++e]})

\
N(e)

(2N+1)d P(B1=1) \
1
C

ed( 1
n − d

+a)P(B1=1).

Hence, taking the limit N Q ., we get that, for e > 0 small, we obtain

N(E++e) − N(E+ − e) \
1
C

ed( 1
n − d+a)P(B1=1). (4.31)

It just remains to estimate P(B1=1). If for 1 [ j [ N(e), and any
c ¥ bj+2 La(e); one has w+

c [ e
2K , then for e rather small

K(ea(n − d) · e+ sup
c ¥ bj+2 La(e)

w+
c )2 [ e2 · K 1 ea(n − d)+

1
2K

22

[
e2

2
.

As the random variables are independent identically distributed, one has
the estimate

P(Bj=1) \ 1P 1w+
0 [

e

2K
222#La(e)

.

So, taking the double logarithm of (4.31), using assumption (H.3) and the
fact that #La(e)=e−d( 1

n − d+a), we get that

lim
e Q 0+

log |log(N(E++e) − N(E+))|
log e

\ −
d

n − d
− da. (4.32)

The Eq. (4.32) is true for any a > 0, by taking a small we end the proof of
Theorem 4.3. L
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